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The autocorrelation function of a ®nite particle with the shape of a right cylinder

is determined by the autocorrelation function of the particle right section,

whatever the latter's shape, and by the cylinder height. In fact, the ®rst function

is an integral transform of the second with a simple kernel depending on the

cylinder height. This integral relation is solved to determine the autocorrelation

function of the particle section in terms of the autocorrelation function of the

full particle.

1. Introduction

In the kinematical approximation, the X-ray or neutron

scattering intensity is the Fourier transform (FT) of the so-

called autocorrelation function of the scattering density n�r� of

the sample (Debye & Bueche, 1949). Con®ning ourselves to

small-angle scattering (SAS), we can assume that n�r� is a two-

value function. Furthermore, in the case of statistically

isotropic samples formed by a dilute collection of equal

particles immersed in a homogeneous solvent, the observed

scattering intensity is linearly related to the FT of the isotropic

autocorrelation function of the only particle shape (Guinier &

Fournet, 1955; Feigin & Svergun, 1987). Many papers that

have appeared over the last ®ve decades investigated how the

geometrical features of the particle shape are re¯ected in the

autocorrelation function and in the shape of the collected

intensity (and vice versa). They can easily be traced back

starting from two of the most recent papers (Burger & Ruland,

2001; Gille 2002a) on this issue. Within this framework, we

prove here a general property of the autocorrelation function

of a right and ®nite cylindrical particle of arbitrary cross

section. Before we report this property, it is convenient to

recall some de®nitions. The autocorrelation function of a

homogeneous particle, which occupies the region V of three-

dimensional (3D) space R3, is de®ned as (Ciccariello et al.,

1981)

3�r� �
1

4�V

Z
V

dv1

Z
V

dv2

Z
dx̂ ��r1 � rx̂ÿ r2�; �1�

where the ®rst two integrals are performed over the region V
(whose volume is denoted by V), the third over all possible

directions of the unit vector x̂, ���� denotes the 3D Dirac

function and, ®nally, the subscript 3 of ��� is related to the

space dimensionality. Clearly, 3�r� is a non-negative function

de®ned over the range r � 0. It is equal to zero if r>L3, L3

denoting the maximal chord of the particle, i.e. the largest

distance between any two points of the particle. Moreover,

de®nition (1) implies that (Ciccariello et al., 1981)

3�0� � 1;
R
R3

3�r� dv � V and  03�0�� � ÿ�=4V; �2�

� denoting the area of the particle surface and the prime (or

the double prime in the following) denotes the ®rst (second)

derivative. The last of these equalities is the core of the Porod

law (Porod, 1951; Debye et al., 1957). Assume now that the

particle is a right cylinder and denote its right section by S.

Since S refers to a particle, it must be a connected set bounded

by an outer closed curve �o and by one or more closed curves

internal to �o. If the internal closed curves coincide with the

void set, the cylindrical particle has no cavity. Similarly to

3�r�, one can de®ne the autocorrelation function of region S
according to

2�r� �
1

2�S

Z
S

dS1

Z
S

dS2

Z
dx̂ ��r1 � rx̂ÿ r2�; �3�

where S denotes the area of S, x̂ is an aribtrary unit vector

lying in the plane of set S and ���� is now the 2D Dirac

function. It is stressed that the tip of x̂ spans a unit sphere in

equation (1) and a unit circle in equation (3). This explains

why equations (1) and (3) involve, respectively, the normal-

ization factors �4��ÿ1 and �2��ÿ1. Thus, one can write

n�r�
� 0; if 0 � r � Ln and n � 2; 3;
� 0; if r>Ln and n � 2; 3;

�
�4�

n�0� � 1;
R

Rn

n�r� drn � Vn and  0n�0�� � ÿCn

for n � 2; 3; �5�

where drn is equal to dS or dv, Vn to S or V, Cn to �=2�S (�
denoting the length of the boundary of S) or �=4V for n � 2

or 3, respectively. [For n � 2, the last equality of (5) is easily

obtained by the procedure followed by Ciccariello et al. (1981)

to prove the corresponding relation for n � 3.] As shown in

Appendix A, both 2�r� and 3�r� have a probabilistic meaning.

The property to be proven in this paper is the following

statement: for any right cylindrical particle, 3�r� is simply



related to 2�r� by an integral transform and this relation can be

inverted to yield 2�r� as an appropriate integro-differential

transform of 3�r�. As will be explained later, this statement

generalizes to the case of ®nite and right cylinders of arbitrary

sections the property recently found by Gille (2002a,b) for

in®nitely long cylinders with convex sections.

2. Proof of the first part of the statement

To prove the ®rst part of the statement, we proceed as follows.

We denote the cylinder height by H and we choose a Cartesian

frame having the Z axis parallel to the cylinder axis, the plane

z � 0 at the mid-point of the cylinder height and the origin at

the centre of gravity of the set S resulting from the section of

the cylinder with the plane z � 0. The vector r1 � �x1; y1; z1�,
present in equation (1), can be written as

r1 � r1;? � z1ẑ; �6�
where r1;? is the component of r1 along the plane z � 0 and ẑ
is the unit vector parallel to axis Z. A similar decomposition

holds true for r2. We now introduce polar coordinates ��; '�
with the polar axis along Z, in order to de®ne the unit vector

x̂. In this way, we have x̂ � �cos ' sin �; sin ' sin �; cos �� �
x̂? sin � � ẑ cos �, where x̂? � �cos '; sin '� is a unit vector

lying on the plane z � 0. Then, the Dirac function present in

equation (1) reads

��r1 � rx̂ÿ r2�
� ��r1;? � rx̂? sin � ÿ r2;?���z1 � r cos � ÿ z2�

and equation (1) becomes

3�r� �
1

4�V

Z
S

dS1

Z h

ÿh

dz1

Z
S

dS2

Z h

ÿh

dz2

Z 2�

0

d'

�
Z �

0

��r1;? � rx̂? sin � ÿ r2;?���z1 � r cos � ÿ z2� sin � d�

� S

2V

Z �

0

sin � d�

Z h

ÿh

dz1

Z h

ÿh

dz2��z1 � r cos � ÿ z2�

�
(

1

2�S

Z
S

dS1

Z
S

dS2

Z
dx̂?��r1;? � r sin �x̂? ÿ r2;?�

)
;

where we have put h � H=2. Comparing the expression inside

the curly brackets to equation (3), one realizes that it is equal

to the autocorrelation function of S evaluated at the point

�r sin ��. Hence,

3�r� � �S=2V� R�
0

2�r sin �� sin � d�

� Rh
ÿh

dz1

Rh
ÿh

��z1 � r cos � ÿ z2� dz2: �7�

By the identity
R b

a ��zÿ c� dz � ��bÿ c���cÿ a�, where ����
is the Heaviside function, the integrals over z1 and z2 yieldRh

ÿh

dz1

Rh
ÿh

��z1 � r cos � ÿ z2� dz2

� �H ÿ rjcos �j���H ÿ rjcos �j�:

After substituting this result in equation (7) and observing

that the resulting integral over ��=2; �� is equal to that over

�0; �=2�, one obtains

3�r� �
S

V

Z �=2

0

2�r sin ���H ÿ r cos ����H ÿ r cos �� sin � d�:

V being equal to HS, after setting r sin � � x, the above rela-

tion can be written as

3�r� �
Z r

E�r;H�

x2�x�
r

�
1

�r2 ÿ x2�1=2
ÿ 1

H

�
dx; �8�

where E�r;H� is de®ned as

E�r;H� � 0; if 0 � r � H

�r2 ÿH2�1=2; if H � r.

�
�9�

Equation (8) represents the general integral transform that

allows us to determine the autocorrelation function of a right

cylinder of height H from the autocorrelation function 2�r� of

its right section S, whatever the latter's shape. We make now

two remarks. First, according to a general result worked out by

Ciccariello (1991), the parallelism between some portions (not

necessarily plane) of the particle surface, at a relative and

orthogonal distance �, are responsible for a discontinuous

behaviour of  003 �r� at r � �. In the case of a right cylinder, the

bases are certainly parallel and distant H. Hence,  003 �r� must

show a ®nite discontinuity proportional to S at r � H. This

relation is easily veri®ed by evaluating the limits of the second

derivative of equation (8) as r! Hÿ and r! H�. Second, in

the case of an in®nitely long cylinder (i.e. H � 1), equation

(8) reduces to

3�r� �
Z r

0

x2�x�
r�r2 ÿ x2�1=2

dx; �10�

i.e. to the expression reported by Gille (2002a). It is stressed

that equation (10) has been proven under conditions more

general than those reported by Gille. In fact, it applies to an

in®nite cylinder with a right section not restricted to be a

convex and simply connected region.

After putting

� � r2; � � x2; �11�
	��� � �1=23��1=2� and '��� � 2��1=2�; �12�

equation (8) takes the form

	��� � 1
2

Z �

E��;H�
'���

�
1

�� ÿ ��1=2
ÿ 1

H

�
d�; �13�

where E��;H� � min�0; � ÿH2�. Equation (13) is a linear

homogeneous integral equation of the Volterra type (though

not exaclty a Volterra equation since both integration limits

depend on �) with a singular kernel (see, e.g., Lovitt, 1950). It

is remarkable that the limit H !1 of equation (13) yields

the integral equation

	��� � 1
2

Z �

0

'���
�� ÿ ��1=2

d� �14�
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which is met in different physical problems. In fact, equation

(14) coincides with Abel's integral equation (Bocher, 1909) as

well as with the integral equation yielding the scattering

intensity collected with an `in®nite' slit (Guinier & Fournet,

1955). In the ®rst case, one considers a material point moving

under the action of gravity in the plane ��; �� along the curve

� � ���� with the vertical axis � upward. Denoting by 	��� the

time required by the material point to move from the curve's

point with ordinate � to that with ordinate 0, Abel showed

that 	��� is given by (14) with '��� � 2f1� ��0����2=2gg1=2. In

the second case, J�q� (the smeared scattering intensity) is

related to I�q� (the pin-hole one) by the integral relation

J�q� � R1
ÿ1

I��q2 � t2�1=2� dt � 2
R1
0

I��q2 � t2�1=2� dt:

With the changes of variables �t2 � q2�1=2 � 1=� and q � 1=�
and the de®nitions 	��� � J�1=��=�2 and '��� � I�1=��=�3, it

is straightforward to show that the previous integral equation

converts into (14).

3. Proof of the second part of the statement

We prove now the second part of our statement, namely that

equation (8) can be solved to write 2�r� as an integro-differ-

ential transform of 3�r�. To this aim, we ®rst con®ne ourselves

to those r values such that 0 � r � H. In this case, E�r;H� � 0

and equation (8) takes the form

r3�r� �
Z r

0

x2�x�
�

1

�r2 ÿ x2�1=2
ÿ 1

H

�
dx: �15�

We set now

'n��� � '���; if 0 � � � nH2; n � 1; 2; . . . ;
0; elsewhere,

�
�16�

and

	1��� � 	���; if 0 � � � H2;
0; elsewhere.

�
�17�

In general, functions 'n��� and 	n��� with n � 1; 2; . . ., [	n���
will be de®ned later for n � 2; 3; . . .] are de®ned as being

equal to zero if � > nH2. Thus, by (16) and (17), (15) becomes

	1��� � 1
2

Z �

0

'1���
�

1

�� ÿ ��1=2
ÿ 1

H

�
d�; 0 � � � H2; �18�

where inequalities 0 � � � H2 are clearly pleonastic. An

integration by parts of the ®rst integral on the right-hand side

(r.h.s.) of (18) and the property 2�0� � '�0� � '1�0� � 1 [see

equations (5), (12) and (16)] yield

	1��� � �1=2 � R�
0

�� ÿ ��1=2'01��� d�ÿ �1=2H� R�
0

'��� d�; �19�

which by derivation gives

'1��� ÿH
R�
0

�� ÿ ��ÿ1=2'01��� d� � H=�1=2 ÿ 2H	01���: �20�

This equation is multiplied by �� ÿ ��ÿ1=2 and integrated with

respect to � over the range �0; �� to getR�
0

'1����� ÿ ��ÿ1=2 d� ÿH
R�
0

'01��� d�
R�
�

��� ÿ ���� ÿ ���ÿ1=2 d�

� H
R�
0

���� ÿ ���ÿ1=2 d� ÿ 2H
R�
0

	01����� ÿ ��ÿ1=2 d�; �21�

where the integration order has been changed in the second

integral. The � integrals not involving '1��� and 	01��� can

be evaluated by the identity
R b

a ��xÿ a��bÿ x��ÿ1=2 dx � �
(Gradshteyn & Ryzhik, 1980, equation 2.261). Then, by the

condition '1�0� � 1 and by a change of the involved variable

names, (21) becomes

1
2

R�
0

'1����� ÿ ��ÿ1=2 d�ÿ �H'1���=2

� ÿH
R�
0

	01����� ÿ ��ÿ1=2 d�: �22�

Subtracting (22) from (18), one gets

H�'1��� ÿ �1=2H� R�
0

'1��� d�

� 	1��� �H
R�
0

	01����� ÿ ��ÿ1=2 d�: �23�

The derivative of this equation is

'01��� ÿ �1=�H2�'1��� � A1���; �24�
where

A1��� �
2

�

d

d�

�
	1���

H
� �2=��

Z �

0

	01����� ÿ ��ÿ1=2 d�

�
�25�

is a known functional of 	1��� and, owing to equations (17)

and (12), of 3���. Hence, according to equation (24), the

sought for '1��� obeys to an inhomogeneous linear differential

equation of the ®rst order with constant coef®cients, the

inhomogeneous term being given by equation (25). The

general solution of equation (24) is

'1��� � C exp��=�H2� � exp��=�H2� R�
0

exp�ÿ�=�H2�A1��� d�;

0 � � � H2;

where C is an arbitrary constant to be chosen in such a way

that the condition '1�0� � 1 be obeyed. Thus, one ®nds that

C � 1 and the ®nal expression of '��� within the range �0;H2�
is

'��� � '1��� � exp��=�H2�
�

1� R�
0

exp�ÿ�=�H2�A1��� d�
�
;

0 � � � H2: �26�
The integro-differential expression of 2�r� in terms of 3�r� is

2�r� � exp�r2=�H2�
�

1� Rr2

0

exp�ÿ�=�H2�A1��� d�
�
;

0 � r � H: �27�



As stated by equation (4), 2�r� � 0 if r is greater than L2, the

maximal chord of S. Thus, if H>L2, equation (27) fully

determines 2�r�. Moreover, since 2�r� � 0 for r>L2, A1��� is

such that

1� Rr2

0

exp�ÿ�=�H2�A1��� d� � 0; if L2 < r � H; �28�

which represents an integral constraint obeyed by 3�r�. Thus,

in the case of cylinders with length longer than `diameter',

equation (27) solves the problem of inverting equation (8). We

now show that (27) coincides with the expression obtained by

Gille (2002b) for an in®nitely long cylinder. In fact, an inte-

gration by parts of the integral present in equation (27) yields

2

�

�
exp�ÿr2=�H2�

Z r2

0

	01���
�r2 ÿ ��1=2

d�ÿ lim
r!0

Z r2

0

	01���
�r2 ÿ ��1=2

d�

�
� 2

H�

�
exp�ÿr2=�H2�	1�r2� ÿ	1�0��

�
� 1

�2H2

Z r2

0

exp�ÿ�=�H2�
�

	1���
�r2 ÿ ��1=2

�
Z �

0

	01���
�r2 ÿ ��1=2

d�

�
d�:

�29�

In the above relation, only the expression inside curly brackets

survives in the limit H !1. After converting to the new

integration variable x � �1=2 and recalling equations (12) and

(17), one ®nds thatZ r2

0

	01���
�r2 ÿ ��1=2

d� �
Z r

0

1

�r2 ÿ x2�1=2

d

dx
�x3�x�� dx:

The limit of this expression, as r! 0, is easily evaluated by

setting x � rt and using equation (12). Its value is

3�0�
R 1

0 dt=�1ÿ t2�1=2 � �=2: By these results, one ®nds that

the limit of (27), as H !1, is Gille's expression

2�r� �
2

�

Z r

0

1

�r2 ÿ x2�1=2

d

dx
�x3�x��:

{In passing, we note that this solution is more easily obtained

by multiplying both sides of equation (14) by �� ÿ ��ÿ1=2 and

using the mathematical identity reported below equation (21)

for evaluating the integral with respect to � over the range

�0; ��.}
When the cylinder has `diameter' greater than length (i.e.

H<L2), we need to ®nd the solution of (8) in the range

�H;L2�. In this range, equations (8) and (13) respectively read

r3�r� �
Z r

�r2ÿH2�1=2

x2�x�
�

1

�r2 ÿ x2�1=2
ÿ 1

H

�
dx

and

	��� � 1
2

Z �

�ÿH2

'���
�

1

�� ÿ ��1=2
ÿ 1

H

�
d�: �30�

This can be written as

	��� � 1
2

Z �

0

'���
�

1

�� ÿ ��1=2
ÿ 1

H

�
d�

ÿ 1
2

Z �ÿH2

0

'���
�

1

�� ÿ ��1=2
ÿ 1

H

�
d�: �31�

At ®rst, we con®ne ourselves to those r values such that

H � r � 21=2H or H2 � � � 2H2: �32�
In these conditions, the integration variable of the second

integral on the r.h.s. of equation (31) ranges within �0;H2� and,

owing to equation (26), the integrand is fully known. Hence,

after setting

�2��� � 1
2

Z �ÿH2

0

'���
�

1

�� ÿ ��1=2
ÿ 1

H

�
d�; H2 � � � 2H2;

�33�
which is fully known, equation (31) can be written as

	��� ��2��� � 1
2

Z �

0

'���
�

1

�� ÿ ��1=2
ÿ 1

H

�
d�;

H2 � � � 2H2: �34�
We set

	2��� � 	��� ��2��� if H2 � � � 2H2;
	1���; if 0 � � � H2:

�
�35�

This function is continuous with its ®rst derivative at � � H2

because the limits of �2��� and �02���, as � approaches H2 from

the right, are equal to zero. Combining equations (35), (34)

and (16), we ®nd

	2��� � 1
2

Z �

0

'2���
�

1

�� ÿ ��1=2
ÿ 1

H

�
d� for 0 � � � 2H2:

�36�
Equation (36) has the same form as equation (18) and,

moreover, '2�0� � 1 owing to equation (16). Thus, it can be

solved by the procedure just reported and, after setting

A2��� �
2

�

�
	2���

H
� d

d�

Z �

0

	02���
��ÿ ��1=2

d�

�
; 0 � � � 2H2;

�37�
one obtains

'2��� � '��� � exp��=�H2�
h

1� R�
0

exp�ÿ�=�H2�A2��� d�
i
;

0 � � � 2H2; �38�
and

2�r� � exp�r2=�H2�
h

1� Rr2

0

exp�ÿ�=�H2�A2��� d�
i
;

0 � � � 21=2H: �39�
It is stressed that equations (37), (38) and (39) respectively

coincide with (25), (26) and (27) within the range 0 � � � H2.

The aforesaid procedure can be iterated to determine 2�r�
throughout its domain �0;L2�. In fact, assume that
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�nÿ 1�1=2H � r � nH or �nÿ 1�H2 � � � nH2;

with n � 3;

and that '��� has been determined throughout the range

0 � � � �nÿ 1�H2, so that we know 'nÿ1���, �nÿ1��� and

	nÿ1���. Then,

�n��� � 1
2

Z �ÿH2

0

'nÿ1���
h 1

�� ÿ ��1=2
ÿ 1

H

i
d�

for �nÿ 1�H2 � � � nH2 �40�
is fully known. Since equation (31) is always true, if we set

	n��� � 	��� ��n��� if �nÿ 1�H2 � � � nH2;
	nÿ1���; if 0 � � � �nÿ 1�H2;

�
�41�

throughout the interval �0; nH2�, equation (31) becomes equal

to

	n��� � 1
2

Z �

0

'n���
�

1

�� ÿ ��1=2
ÿ 1

H

�
d�; 0 � � � nH2:

�42�
Again, the form of equation (42) coincides with that of (18) or

(36) and 'n�0� � 1 owing to equations (12) and (5). Hence,

with the de®nition

An��� �
2

�

�
	n���

H
� d

d�

Z �

0

	0n���
��ÿ ��1=2

d�

�
; 0 � � � nH2;

�43�
we ®nd that

'n��� � '��� � exp��=�H2�
h

1� R�
0

exp�ÿ�=�H2�An��� d�
i
;

0 � � � nH2; �44�
and

2�r� � exp�r2=�H2�
h

1� Rr2

0

exp�ÿ�=�H2�An��� d�
i
;

0 � r � n1=2H: �45�
It is clear now that, once n has become suf®ciently large for

the condition n1=2H>L2 to be obeyed, 2�r� is fully deter-

mined in terms of 3�r� by equation (45). In other words,

equation (8) has been inverted to yield 2�r� in terms of 3�r�,
and our statement is fully proven.

4. Concluding remarks

The main results of this paper are: (a) to show that the

autocorrelation function 3�r� of a homogeneous, right and

®nite cylinder is fully determined by its height H and by the

autocorrelation function 2�r� of its right section S, and (b) to

®nd the integral transform that determines 2�r� in terms of

3�r�. The ®rst result is not unexpected because a right cylinder

is fully determined when we know its right section and its

height. One should however recall that the knowledge of 2�r�
neither ensures the exact knowledge of the shape of S nor that

S is unique because a general procedure able to solve the non-

linear integral equation (3) is at present unknown. (In fact, we

can only use a trial-and-error procedure.) Hence, our result

implies that, even if 2�r� can turn out to be the same for

different sets S, the right cylinders of height H associated with

each of these sets certainly have the same autocorrelation

function 3�r�, which is given by equation (8). The second

result appears to be more interesting. On the one hand, it gives

a procedure able to solve the integral equation (13) that can

be considered as a generalized Abel equation. On the other

hand, the possibility of determining 2�r� in terms of 3�r� is, in

principle, an interesting result because 3�r� can be obtained

by Fourier transforming the collected intensity I�q� scattered

by a sample that, on the basis of further physico-chemical

information, is thought to be a dilute, isotropic and mono-

disperse collection of right cylindrical particles. As already

noted, the most important geometrical quantity of a right

cylindrical particle is the shape of its right section that can only

be determined by a trial-and-error procedure. The right

section shape being only related to 2�r�, the trial-and-error

procedure carried on 2�r� is certainly more constrained and,

in this sense, more accurate than that carried on 3�r�. In this

way, the usefulness of determining 2�r� from 3�r� appears

evident. It is also remarked that the knowledge of 3�r� implies

that of H. In fact, the volume and the surface area of the

particle are determined by the second and the third of equa-

tions (2). Moreover, we know that V � SH and � � 2S��H

and that � (the total length of the cylinder edges) can be

obtained by the angularity relation [i.e. by equation (4.6) of

Ciccariello et al. (1981)] that, in our case, reads

 003 �0�� � �=3�V. Thus, � � 3�SH 003 �0�� and, from the

last of equations (2), one obtains the equation

2S� 3�H2S 003 �0�� � ÿ4SH 03�0��, which determines H. Our

last remark is due to one of the referees and corresponds to

the fact that the statement proven above for the case of a

homogeneous right cylindrical particle holds true even when

the right cylindrical particle is not homogeneous. To prove this

generalization, it is ®rst remarked that the cylindrical

symmetry implies that the particle scattering density np�r� only

depends on r? [see equation (6)], i.e.

np�r� � np�r?�: �46�
The two- and three-dimensional autocorrelation functions,

de®ned by equations (3) and (1) in the homogeneous case,

respectively become in the inhomogeneous case

2�r� �
1

2�hn2
pi2S

Z
dx̂

Z
S

np�r1� dS1

Z
S

dS2 np�r2���r1 � rx̂ÿ r2�

�47�
and

3�r� �
1

4�hn2
pi3V

Z
dx̂

Z
V

np�r1� dv1

Z
V

dv2 np�r2���r1 � rx̂ÿ r2�:

�48�
Here hn2

pi3 and hn2
pi3 denote the volume and surface mean

values of the squared scattering density and, owing to equa-

tion (46), they are equal. In fact,



hn2
pi3 �

1

V

Z
V

n2
p�r� dv � 1

SH

Z H=2

ÿH=2

dz

Z
S

n2
p�r?� d2r?

� 1

S

Z
S

n2
p�r?� d2r? � hn2

pi2: �49�

The same property applies to the volume and surface average

of the scattering density, so that hnpi3 � hnpi2. From these

de®nitions and properties, it follows that equations (4) and

(5a) are also valid for inhomogeneous particles, equation (5b)

becomes
R

Rn n�r� drn � hnpiVn. [Equation (5c) takes a more

involved form never used in our analysis and already reported

by Ciccariello et al. (1988) in the 3D case.] Applying to

equation (48) the same analysis performed in x2, one imme-

diately realizes that equation (8) still holds true. In solving this

equation, we used the fact that 3�0� � 2�0� � 1. But, we

already noted that these equalities are also valid for in-

homogeneous cylindrical particles. Thus, one concludes that

the procedure reported in x3 for solving equation (8) is also

valid for inhomogeneous cylindrical particles.

APPENDIX A

It is perhaps not useless to recall the probabilistic meaning of

the autocorrelation function 3�r� de®ned by equation (1). Let

us toss at random a stick of length r, where by random is meant

that one end of the stick has the same probability density of

falling within an in®nitesimal volume dv, whatever the loca-

tion of dv in R3, and that the stick has the same probability

density of lying within an in®nitesimal solid angle dx̂ whatever

the latter's orientation x̂. Consider only those tosses where

the stick has at least one end within the particle. Then, 3�r�=V

represents the ratio of the number of tosses where the stick

lies with both ends within the particle over the total number of

tosses where one end of the stick falls within the particle. (It is

stressed that, in evaluating the ®rst number, all the tosses

where only the ends of the stick lie within the particle must be

accepted. More explicitly, a toss is acceptable even if some

inner portions of the stick lie out of the particle: a case not

unlikely when the particle presents some cavities and/or has a

non-convex shape.) For this reason, Debye et al. (1957) called

3�r�=V the stick probability function. Clearly, mutatis

mutandis, the same interpretation applies to 2�r�. Ciccariello

et al. (1981) showed that

 003 �r� � ÿ�1=4�V� R
�

�m̂1 � x̂� dS1

R
�

�m̂2 � x̂� dS2

R
��r1 � rx̂ÿ r2� dx̂;

�50�
where m̂i (for i � 1; 2) is the unit vector orthogonal to the

in®nitesimal surface element dSi of the particle surface �.

Applying the same procedure used for deriving equation (50),

one easily shows that

 002 �r� � ÿ�1=2�S� R
�

�m̂1 � x̂� dl1

R
�

�m̂2 � x̂� dl2

R
��r1 � rx̂ÿ r2� dx̂;

�51�
� and ��r1 � rx̂ÿ r2� denoting the set of the closed curves

delimiting S and the 2D Dirac function, respectively. The

relation considered by Porod (1967) generalizes as

n�r� �
R1
r

�xÿ r� 00n �x� dx for n � 2; 3: �52�

These relations are immediately proven by integrating by

parts and using the properties that n�r� and  0n�r� approach

zero as r!1. Moreover, the relationsR1
0

x 00n �x� dx � 1 and
R1
0

 00n �x� dx � �=4V or �=2�S;

for n � 2; 3; �53�
are also true, owing to the second and third relations reported

in equation (5). However, the integral relation (52) and the

non-negativeness of n�r� do not ensure the non-negativeness

of  00n �r�. In fact, according to (50), the non-negativeness of

 00n �r� is only ensured in the cases where V or S are convex sets.

In these cases, if vector x̂ points towards the interior of the

`particle' at dS1 or dl1, it will point outward to the `particle' at

dS2 or dl2 and the positivity of the quantity �ÿ�m̂1 � x̂��m̂2 � x̂��
as well as that of the integrand in equations (50) or (51) is

ensured. Conversely, when the particle is not convex,  00n �r� can

be negative within some r intervals. We report here an

example. Consider a 2D `particle' consisting of two tangent

and not overlapping circles of radius R. We have S � 2�R2.

The explicit evaluation of 2�r� yields

2�r� � 2;p�r� � 2;int�r�; �54�
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Figure 1
The continuous curve shows the behaviour of the autocorrelation
function of a 2D particle that consists of two non-overlapping circles of
radius R in contact at a point. The dot-dashed curve shows the sum of the
contributions arising from the overlapping of each circle with itself, after
the particle has been translated by r. The broken curve, which merges
with the continuous one at � � 1, shows the further `interference'
contribution, i.e. the sum of the (angular average of the) overlapping of a
circle, translated by r, with the other. Finally, the dotted curve is the plot
of  002 �r� (divided by 10). It shows that  002 �r� is negative within an interval
on the right of the point � � r=2R � 1.
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where

2;p�r� �
2

�
��1ÿ x��arccos�x� ÿ x�1ÿ x2�1=2�; �55�

2;int�r� �
2

�2
��2ÿ x�

Z
0

arccos�x=2�
�arccos��� ÿ��1ÿ�2�1=2� d�;

�56�
with

x � r=2R and � � �1ÿ 2x cos��� � x2�1=2: �57�
Equation (55) is twice the overlapping function (divided by S)

of a single circle while equation (56) is the interference

contribution, it being equal to twice the angular average of the

overlapping of one circle with the other translated by r. The

continuous, the dot-dashed and the broken curves shown in

Fig. 1 represent 2�r�, 2;p�r� and 2;int�r�, respectively. The

dotted curve plots  002 �r�. The limit of this function, as r! 0, is

different from zero because the `particle' has a contact point

(Ciccariello & Benedetti, 1982). The origin of its divergence as

x! 1ÿ is evident from analytic expression (55). Finally, the

negativeness of  002 �r� within a small interval on the right of

x � 1 (i.e. r> 2R) is evident. It is related to the fact that, when

the chord length lies within �2R; 2:58R�, most of the intersects

refer to in®nitesimal elements dl1 and dl2 of the two circles

where the unit normals form, between themselves, an angle

smaller than �=2 so that the integrand of equation (51) is

negative.

The intersect distribution A3�r�, de®ned by Porod (1967) as

proportional to the second derivative of the autocorrelation

function, can be generalized to the 2D case so as to write

An�r� �  00n �r�=Cn for n � 2; 3; �58�
Cn being de®ned by equation (5). Owing to the ®rst of

equations (53), one recovers the normalization conditionR1
0

xAn�x� dx � 1; n � 2; 3: �59�

Thus, the integral expression of An�r� in terms of the `particle'

boundaries is also given by equations (51) or (50) [times Cÿ1
n ].

It is however stressed that: (i) even though the normalization

condition (59) always holds true, a probabilistic interpretation

of An�r� is possible only in the case of a single convex particle;

(ii) An�r�, via (50) or (51), requires those chords that have

their ends on the particle boundaries to be considered as

acceptable, independently from the fact that parts of the chord

lie externally to the particle; (iii) only A3�r� is directly related

to the scattering intensity due to equation (52); and (iv) it does

not appear possible to express An�r� in terms of functions '�r�
and f �r� considered by MeÂring & Tchoubar (1968).

We sincerely thank the referee who brought to our attention

the fact that our statement also applies to inhomogeneous

cylindrical particles.
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